

Table of contents

Introduction

Chapter 1: Getting Started

Chapter 2: Setting Up Your Mobile
DevOps Platform

Chapter 3: How to Use The Recipes

Chapter 4: The Recipes
•	 Cloning & Setup

•	 Dependencies

•	 Testing

•	 Building

•	 Linting

•	 Deploying

•	 Notifications

•	 Caching

•	 Optimisation

•	 Running Steps & Workflows

Chapter 5: Technology Specific Recipes
•	 iOS

•	 Android

•	 Other

Additional Resources

4

6

9

14

16
17

18

19

24

25

26

33

35

42

44

46
47

57

65

66

Acknowledgments

This edition has been written with the significant input, contributions
and reviews of more than 20 mobile engineers and managers, many of
them deep experts in their respective fields.
Thank you very much to all of them.

Special thanks to:

Krisztián Gödrei

Lex Zavala

Olivér Falvai

Szabolcs Tóth

Zsolt Vicze

Introduction

In a fast-paced digital world, where mobile applications are at the
forefront of technology, developers and DevOps professionals find
themselves constantly navigating the intricacies of the mobile app
development landscape. The demand for delivering high-quality
mobile applications at an unprecedented pace has given rise to Mobile
DevOps, a set of practices that combine mobile app development
and operations to streamline the entire process. Just like a master
chef perfects their recipes over time, mobile developers and DevOps
engineers are constantly refining their workflows to create delightful
mobile experiences.

Welcome to “Masters of Efficiency: 50+ Workflow Recipes for Peak
Performance.” This pdf is your all-in-one guide to mastering the art
of Mobile DevOps, providing a delectable assortment of recipes
designed to enhance your mobile development and deployment
journey with Bitrise. Much like a chef uses a combination of
ingredients, techniques, and creativity to craft a delicious meal, this
pdf will empower you to blend the right practices, and methodologies
to cook up exceptional mobile applications.

Mobile DevOps is more than just a process; it’s a culinary journey
filled with diverse ingredients like continuous integration, continuous
delivery, automated testing, and infrastructure as code.

Inside these pages, you will discover a comprehensive collection of
50+ recipes that cater to the unique tastes and preferences of mobile
development and DevOps practitioners. Each recipe is meticulously
designed to address specific challenges, encourage best practices,
and inspire innovative approaches. Whether you’re a seasoned
DevOps expert or a fledgling developer, there’s something for
everyone to savor.

Our recipes are organized into chapters, each corresponding to a key
stage in the Mobile DevOps process, from setting up, to preparing
your ingredients (code and configurations) and onto the process of
cooking (building, testing, and deploying your mobile apps). As you
advance through the pages, you’ll master each stage of the Mobile
DevOps process, learning how to orchestrate the perfect mobile
application from start to finish.

The recipes are designed to be practical and adaptable, ensuring that
you can incorporate it into your unique workflow, making your mobile
development process smoother, faster, and more efficient. Our recipe
collection includes both modular recipes and fully backed, plug-and-
play workflows tailored for a variety of scenarios.

Modular recipes are designed to enhance specific aspects of your
workflow. They consist of a few steps that, when inserted into your
existing bitrise.yml, complement your workflow but may not function
independently. These recipes are ideal for developers seeking to
customize and extend their workflows with specific functionalities.

On the other hand, our fully backed recipes (plug-and-play) are
comprehensive workflows that can be directly integrated into
your bitrise.yml file, offering a plug-and-play experience. These are
complete workflows that require no additional steps to be functional,
designed for seamless implementation.

It’s important to note that while some recipes appear modular due to
their specific focus or limited steps, they are, in fact, whole workflows
that can operate “out of the box” when added to an existing bitrise.
yml. This dual nature means certain recipes may qualify as both
modular and plug-and-play, offering flexibility and efficiency in
workflow customization.

Disclaimer: Recipes that have a full workflow yml listed like our (iOS)
Nightly for example, do reference Steps that might have older versions
compared to what we have available. Therefore our recommendation
is to always ensure that you are updating your Steps to the latest stable
versions available.

So, whether you’re a solo developer, part of a mobile development
team, or a seasoned DevOps engineer looking to dive into the world
of mobile apps,”Masters of Efficiency: 50+ Workflow Recipes for
Peak Performance.” will be your go-to guide. Prepare to embark on
a journey through these recipes where innovation, efficiency, and
excellence converge to create incredible mobile experiences.

Happy building!
The Bitrise Team

6

Getting started

1Chapter

7

Thank you for downloading “Masters of Efficiency:
50+ Workflow Recipes for Peak Performance.”
This pdf is your ultimate guide to mastering the art of
Mobile DevOps. In this chapter, we’ll guide you on how to
use it effectively.

Who Is This For?

This e-book is designed to cater to a diverse audience, including:

•	 Mobile App Developers: Looking to streamline their
development process.

•	 DevOps Engineers: Focused on optimizing deployment
and operations.

•	 Team Leaders: Seeking efficient practices for their mobile
development teams.

•	 Anyone Interested in Mobile DevOps: Exploring the world
of mobile app delivery.

What to Expect

The recipes are organized into several chapters, each dedicated
to a different aspect of the Mobile DevOps process. You’ll find a
rich selection of recipes designed to address specific challenges,
encourage best practices, and inspire innovation as well as being
practical and adaptable, some are fully worked out to give you
a plug-and-play experience, whereas others might still need further
steps to be added to ensure that you can incorporate them.

How to Get Started:

Before you begin using the recipes, you’ll want to ensure you’ve signed
up. In the following chapter, you’ll learn how to set up your workspace,
gather the essential tools, and organize your team for a successful
Mobile DevOps journey.

Getting Started: Bitrise is a CI/CD Platform as a Service (PaaS), mostly
focused on mobile app development. It is a collection of tools and
services to help you with the development and automation of your
software projects.

To use it, you can sign up via email or via a Git hosting provider,
connect a repository, and start building!C

ha
pt

er
 1:

 G
et

tin
g

st
ar

te
d

8

Signing up for Bitrise

Signing up for a Bitrise account is easy. You can get started with your:

•	 Email

•	 GitHub

•	 GitLab

•	 Bitbucket

Signing up with either of the Git service providers means you connect
your Bitrise account to your account on that service provider. With
a connected account, you can grant Bitrise access to any of your
repositories on that account.

After signing up, you can connect your Bitrise account to all of the
three supported Git service providers. For example, after you signed
up with GitHub, you can connect your Bitrise account to both your
GitLab and Bitbucket accounts, too, and access any repositories you
have on those accounts.

	☑ Select Your Recipe: Start by choosing a recipe that aligns with
your current needs or interests. Recipes are organized into
chapters, making it easy to find what you’re looking for.

	☑ Gather Your Ingredients: Each recipe comes with a list of
ingredients, which are the tools, techniques, and practices
you’ll need.

	☑ Follow the Instructions: Read the step-by-step instructions
carefully. You’ll find detailed guidance on how to implement the
recipe in your Mobile DevOps workflow.

	☑ Customize to Taste: Feel free to adapt the recipe to your unique
circumstances. We encourage creativity and innovation.

	☑ Enjoy the Results: As you follow the recipe, you’ll create an
improved mobile development process. Savor the results
of your efforts.

Additional Resources

Throughout the pdf, you’ll find additional links to tips, techniques, case
studies, and recommendations to complement the recipes. Make sure
to explore these additional resources to gain a deeper understanding
of the Mobile DevOps landscape.

C
ha

pt
er

 1:
 G

et
tin

g
st

ar
te

d

https://devcenter.bitrise.io/en/getting-started/signing-up-for-bitrise.html#signing-up-with-a-git-provider?utm_source=marketo&utm_medium=social&utm_campaign=workflow-recipes&utm_content=Workflow-Recipes-GitHub-signup
https://devcenter.bitrise.io/en/getting-started/signing-up-for-bitrise.html#signing-up-with-a-git-provider?utm_source=marketo&utm_medium=social&utm_campaign=workflow-recipes&utm_content=Workflow-Recipes-GitHub-signup
https://devcenter.bitrise.io/en/getting-started/signing-up-for-bitrise.html#signing-up-with-a-git-provider?utm_source=marketo&utm_medium=social&utm_campaign=workflow-recipes&utm_content=Workflow-Recipes-GitLab-signup
https://devcenter.bitrise.io/en/getting-started/signing-up-for-bitrise.html#signing-up-with-a-git-provider?utm_source=marketo&utm_medium=social&utm_campaign=workflow-recipes&utm_content=Workflow-Recipes-Bitbucket-signup

9

Setting Up Your
Mobile DevOps
Platform

2Chapter

10

Now, it’s time to roll up your sleeves and start setting
up your Mobile DevOps Platform. Just as a chef needs the
right tools, ingredients, and workspace to create culinary
masterpieces, you need the right environment to excel in
the world of Mobile DevOps.

Creating your first Workspace

After signing up, Bitrise will automatically create your first Workspace.
A Workspace is an environment that allows you to manage your
Bitrise apps and the team members working on the apps. You need a
Workspace to be able to add an app and start running builds. You can:

•	 Create multiple Workspaces.

•	 You can be invited to Workspaces by other Bitrise users.

Workspace name

Don’t worry: you can rename any of your Workspaces at any time!

To sign up for a paid subscription of your own, you need to have at
least one Workspace. Check our Pricing page for more information or
Sign up for a free trial.

Adding a new App

Adding a new app to Bitrise means that you connect a Git repository
to Bitrise, allowing us to clone the repository and then build it.

Add a new app any time by clicking the + symbol on the top menu bar
and then selecting Add new app on web UI from the dropdown menu.

C
ha

pt
er

 2
: S

et
tin

g
U

p
Yo

ur
 M

ob
ile

 D
ev

O
ps

 P
la

tf
or

m

https://bitrise.io/plans-pricing
https://app.bitrise.io/users/sign_up?utm_source=marketo&utm_medium=social&utm_campaign=workflow-recipes&utm_content=Workflow-Recipes-free-trial-signup

11

As part of the initial configuration process, you:

•	 Decide if an app is private or public. Private app data is only
available to those who are invited to work on the app.

•	 Specify the repository: it can be either a GitHub, GitLab or
Bitbucket repository, a manual repository URL, or a self-hosted
GitLab repository.

•	 Register an SSH key: this gives Bitrise access to the repository
so we can clone it during the build process.

•	 Specify the branch that you want to build.

You can change all this later - and anyway, adding a new app takes
a couple of minutes so you can always just do the process from scratch.

As part of the process, Bitrise will scan and validate your repository
and set up an app configuration based on the results of the scan: we
can detect the platform type of your app based on the configuration
files. If the validation fails, you can set up the app manually.

Read the details of the process in our Adding your first app guide.

You can also enable the Getting Started Guide to receive hints while
adding your app: Open your Profile settings, scroll down to the
Getting Started Guide section, and set the toggle to On.

Webhooks and Triggers

You can set up webhooks as part of the process of adding a new app,
or at any time later. Webhooks allow Bitrise to communicate with third
party services: for example, a Bitrise webhook set up on a GitHub
repository allows Bitrise to start a build automatically when code is
modified in the repository.

Once webhooks are set up, configure when to start builds
automatically by defining triggers. You can set:

•	 The event which should trigger the build: for example,

C
ha

pt
er

 2
: S

et
tin

g
U

p
Yo

ur
 M

ob
ile

 D
ev

O
ps

 P
la

tf
or

m

https://devcenter.bitrise.io/en/apps/public-apps.html
https://devcenter.bitrise.io/en/apps/configuring-the-repository-url-and-the-default-branch.html#changing-the-repository-url
https://devcenter.bitrise.io/en/connectivity/configuring-ssh-keys.html
https://devcenter.bitrise.io/en/apps/configuring-the-repository-url-and-the-default-branch.html#changing-the-default-branch
https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N62a9c4396a136

12

This means that you can, for example, set up a trigger that starts a
build when a pull request is opened to the main branch.

Webhooks are required for triggers to work! Read more:

•	 Adding incoming webhooks

•	 Adding outgoing webhooks

•	 Triggering builds automatically

Testing and Deploying

Testing your app and deploying your app are both done with the help
of our Steps: we have Steps dedicated to both these functions, based
on the platform type. Unit testing, UI testing, and real device testing
are all possible on Bitrise:

•	 Device testing for Android

•	 Device testing for iOS

•	 Running Android unit tests

•	 Running unit and UI tests for iOS apps

Once your app is tested, built and ready to go, you can quickly deploy
it to the store of your choice, for example, Google Play or the App Store.

You can also fast track release cycles by automating boring release
tasks, gaining transparency across your release processes, and
having one centralized hub to manage it all with the Bitrise Release
Management add-on.

Build and Workflows
Once you add an app, your first build will be kicked off automatically.
To view your builds, go to your Dashboard - which is the first page once
you log in to Bitrise - select the app and click the Builds tab to access
your builds.

C
ha

pt
er

 2
: S

et
tin

g
U

p
Yo

ur
 M

ob
ile

 D
ev

O
ps

 P
la

tf
or

m

code push or a pull request.

•	 The branch of your repository that can trigger builds: for example,
main or dev.

https://devcenter.bitrise.io/en/connectivity/webhooks/adding-incoming-webhooks.html
https://devcenter.bitrise.io/en/connectivity/webhooks/adding-outgoing-webhooks.html
https://devcenter.bitrise.io/en/builds/starting-builds/triggering-builds-automatically.html
https://devcenter.bitrise.io/en/testing.html
https://devcenter.bitrise.io/en/deploying.html
https://bitrise.io/integrations
https://devcenter.bitrise.io/en/testing/device-testing-with-firebase/device-testing-for-android.html
https://devcenter.bitrise.io/en/testing/device-testing-with-firebase/device-testing-for-ios.html
https://devcenter.bitrise.io/en/testing/testing-android-apps/android-unit-tests.html
https://devcenter.bitrise.io/en/testing/testing-ios-apps/running-xcode-tests.html
https://bitrise.io/platform/devops/release-management
https://bitrise.io/platform/devops/release-management

13

C
ha

pt
er

 2
: S

et
tin

g
U

p
Yo

ur
 M

ob
ile

 D
ev

O
ps

 P
la

tf
or

m

A build is a series of jobs, executed in the order defined in the app’s
Workflows. The jobs are called Steps, which represent blocks of script
execution. The Steps can be arranged on the graphical UI of the
Workflow Editor and they can do a huge number of things: clone your
repository, build your app, run tests, pass values to each other, send
notification messages to developers, and many more.

Read more in our relevant guides:

•	 Workflows

•	 Steps

•	 Builds and Pipelines

A build’s logs can be viewed on the build’s page: go to the Builds tab
and select the build you want.

All builds run in clean virtual machines that are discarded after the
build is complete. Read more about them: Build machines.

Workflows

A Bitrise Workflow is a collection of Steps. When a build of an app is
running, each Step will be executed in the order that is defined in the
Workflow. Workflows can be created, defined and modified in two ways:

•	 Using the graphical Workflow Editor on bitrise.io, or the offline
version on your own device.

•	 Directly editing the bitrise.yml file of your project.

Ultimately, both methods modify the bitrise.yml file - the Workflow
Editor is simply a friendlier way of doing so!

By default, a single build is a single Workflow. But you can also chain
Workflows together so they run in succession, as well as to trigger
multiple Workflows to run simultaneously.

Workflows can also be arranged into Pipelines. A Pipeline consists of
multiple Stages and each Stage consists of one or more Workflows
which run in parallel.

https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N62a1dd5315b38
 https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N629f741be4d32
https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N62c82c8b550b1
https://devcenter.bitrise.io/en/testing.html
https://devcenter.bitrise.io/en/builds/environment-variables.html
https://devcenter.bitrise.io/en/builds/configuring-build-settings/configuring-email-notifications.html
https://devcenter.bitrise.io/en/builds/configuring-build-settings/configuring-email-notifications.html
https://devcenter.bitrise.io/en/steps-and-workflows/introduction-to-workflows.html
https://devcenter.bitrise.io/en/steps-and-workflows/introduction-to-steps.html
https://devcenter.bitrise.io/en/builds.html
https://devcenter.bitrise.io/en/infrastructure/build-machines.html
https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N62b15ff618287
https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N629f741be4d32
https://www.bitrise.io/
https://devcenter.bitrise.io/en/bitrise-cli/installing-and-upgrading-the-offline-workflow-editor.html
https://devcenter.bitrise.io/en/bitrise-cli/installing-and-upgrading-the-offline-workflow-editor.html
https://devcenter.bitrise.io/en/references/glossary.html#UUID-bd1f4267-9e10-9cdd-d7ab-0964f8fbe9fa_N62a0991e33840
https://devcenter.bitrise.io/en/builds.html
https://devcenter.bitrise.io/en/builds/build-pipelines.html

14

How to Use
The Recipes

3Chapter

15

Workflow Recipes provide ready-made solutions for common
Workflow tasks. Here you will find a range of different
Recipes along with examples of entire Workflows.
We have compiled a vast variety of workflow recipes from
the most common use cases on Bitrise to more advanced
cases. Special thanks to everyone who contributed with one
or more workflow recipes.

Using Recipes

You can use Workflow Recipes in two ways:

•	 By adding the Steps into your Workflow via the Workflow Editor.

•	 By copy-pasting the bitrise.yml snippet into your
app’s bitrise.yml file.

Adding Steps via the Workflow Editor

All you need to do here is follow the step-by-step instructions
in the Recipe.

Copy-pasting the bitrise.yml snippet

You can also simply copy-paste the snippet to your bitrise.yml file
directly. Don’t forget to:

	☑ Check the formatting of the copy-pasted YAML

	☑ Read the instructions as they may contain some important
information on configuration

	☑ Check and customize the input variables

C
ha

pt
er

 3
: H

ow
 to

 U
se

 T
he

 R
ec

ip
es

https://github.com/bitrise-io/workflow-recipes#using-recipes
https://devcenter.bitrise.io/en/builds/configuring-build-settings/managing-an-app-s-bitrise-yml-file.html
https://github.com/bitrise-io/workflow-recipes#adding-steps-via-the-workflow-editor

16

The Recipes

4Chapter

17

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

4.1
Cloning &
Setup

Cloning the repository
Description
Clone a git repo.

Instructions
1.	 Make sure that the Workflow has the Activate SSH key (RSA

private key) Step. This allows the Git client on the build VM to
access private repositories.

2.	 Add the Git Clone Repository Step.
•	 Check out the optional inputs in the Workflow Editor or in the

Step documentation.main or dev.

bitrise.yml

Install Flutter SDK
Description
Install the latest stable/beta or a specific version of Flutter.

Instructions
1.	 Add the Flutter Install Step. Use this Step before the Cache Pull

Step to make sure caching works correctly.

2.	 You can install either the latest stable/beta versions or
a specific version:
•	 By default, the Step installs the latest stable version.
•	 To install the latest beta, set the Flutter SDK git repository

version input to beta.
•	 Recommended: To install a specific version, set the Flutter

SDK installation bundle URL input. You can find the list of
Flutter installation bundles here: https://flutter.dev/docs/
development/tools/sdk/releases. Make sure you set the bundle
based on the stack (MacOS or Linux).

bitrise.yml
Specific version (recommended):

- activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
- git-clone@8: {}

- flutter-installer@0:
 inputs:
 - installation_bundle_url: https://storage.
googleapis.com/flutter_infra_release/releases/stable/
macos/flutter_macos_2.5.3-stable.zip

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/activate-ssh-key
https://bitrise.io/integrations/steps/activate-ssh-key
https://bitrise.io/integrations/steps/git-clone
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/flutter-install-flutter-sdk.md
https://www.bitrise.io/integrations/steps/flutter-installer
https://flutter.dev/docs/development/tools/sdk/releases
https://flutter.dev/docs/development/tools/sdk/releases

18

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

4.2
Dependencies

Latest stable: Latest beta:

- flutter-installer@0: {} - flutter-installer@0:
 inputs:
 - version: beta

(iOS) Install CocoaPods Dependencies
Description
Installing CocoaPods dependecies. Make sure that you are using the
workspace and not the project file in your steps. Check the value of
$BITRISE_PROJECT_PATH env var.

Instructions
1.	 Add the Run CocoaPods install Step.

2.	 (Optional) If your Podfile is not in the root, you can set the Podfile
path input.

bitrise.yml

(iOS) Install Carthage Dependencies
Description
Installing Carthage dependecies.

Instructions
Add the Carthage Step. Set the input variables:
•	 Github Personal Access Token: We recommend adding a GitHub

access token to your Secrets ($GITHUB_ACCESS_TOKEN). We need
this token to avoid GitHub rate limit issue. See the GitHub guide:
Creating an access token for command-line use on how to create
Personal Access Token. Uncheck every scope box when creating
this token. There is no reason this token needs access to private
information.

•	 (Optional) Additional options for carthage command: See the
Carthage docs for the available options, for example,
--use-xcframeworks --platform iOS.

bitrise.yml

- cocoapods-install@2: {}

↓

- carthage@3:
 inputs:
 - carthage_options: “--use-xcframeworks --platform iOS”

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-cocoapods-dependencies.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/cocoapods-install
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-carthage-dependencies.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/carthage
https://help.github.com/articles/creating-an-access-token-for-command-line-use/
https://github.com/Carthage/Carthage

19

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

4.3
Testing

(React Native) Install dependencies
Description
Install dependencies using either yarn or npm.

Instructions
1.	 Add either the Run yarn command or the Run npm command Step

based on your project setup.

2.	 Set the yarn command to run or the npm command with
arguments to run input to install.

bitrise.yml
Using yarn:

(iOS) Run tests on a simulator
Description
Run unit or UI tests of an iOS app on a simulator.

Instructions
1.	 Add an Xcode Test for iOS Step. Override any of the following

inputs if needed:
•	 Project path: The default value is $BITRISE_PROJECT_PATH

and in most cases you don’t have to change it.
•	 Scheme: The default value is $BITRISE_SCHEME, this variable

stores the scheme that you set when adding the app on Bitrise.
You can specify a different scheme if you want but it must be a
shared scheme.

•	 Device destination specifier (default: platform=iOS
Simulator,name=iPhone 8 Plus,OS=latest).

2.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes
the test results available in the Test Reports add-on. The failed
tests will be also available under the Test Results tab on the
build details page.

bitrise.yml

- yarn@0:
 inputs:
 - command: install

- xcode-test@5: {}
- deploy-to-bitrise-io@2: {}

- npm@1:
 inputs:
 - command: install

Using npm:

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/rn-install-dependencies.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://www.bitrise.io/integrations/steps/yarn
http://Run npm command
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-simulator-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/xcode-test
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/testing/test-reports.html

20

MO
DU

LA
R

MO
DU
LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(iOS) Run Tests on a Physical Device
Description
Run unit or UI tests on a physical device. Our device testing solution is
based on Firebase Test Lab. You can find the resulting logs, videos and
screenshots on Bitrise.

Prerequisites
1.	 The source code is cloned and the dependencies (for example,

Cocoapods, Carthage) are installed.

2.	 You have code signing set up. See iOS Code Signing for more details.

Instructions
1.	 Add an Xcode Build for testing for iOS Step.

2.	 Add a [BETA] iOS Device Testing Step.
•	 Setup code signing for the Step.

3.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes
the test results available in the Test Reports add-on.

 bitrise.yml

(Android) Run unit tests
Description
Run unit tests (for example, testDebugUnitTest).

Instructions
1.	 Add an Android Unit Test Step. Input variables you might set:

•	 Project Location: Use the default $BITRISE_SOURCE_DIR
or $PROJECT_LOCATION. You can set a specific path but the
automatically exposed Environment Variables are usually
the best option.

•	 Variant: Use the $VARIANT Enviromment Variable, or specify
a variant manually.

•	 Module: Specify one or leave it blank to run tests in all
of the modules.

Relevant links
•	 https://devcenter.bitrise.io/en/testing/device-testing-for-ios.html

- xcode-build-for-test@3:
 inputs:
 - automatic_code_signing: api_key
- virtual-device-testing-for-ios@1: {}
- deploy-to-bitrise-io@2: {}

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-device-testing.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html
https://bitrise.io/integrations/steps/xcode-build-for-test
https://www.bitrise.io/integrations/steps/virtual-device-testing-for-ios
http://Deploy to Bitrise.io - Apps, Logs, Artifacts
http://Test Reports add-on
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-unit-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://www.bitrise.io/integrations/steps/android-unit-test
https://devcenter.bitrise.io/en/testing/device-testing-for-ios.html

21

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

2.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes
the test results available in the Test Reports add-on. The failed
tests will be also available under the Test Results tab on the
build details page.

bitrise.yml

↓

- android-unit-test@1:
 inputs:
 - project_location: $PROJECT_LOCATION
 - variant: $VARIANT
- deploy-to-bitrise-io@2: {}

Relevant links
•	 Android unit tests

(Android) Run UI / instrumentation tests
on virtual devices
Description
Run UI / instrumentation (for example, Espresso) or robo/gameloop
tests on virtual devices. Our device testing solution is based on
Firebase Test Lab. You can find the resulting logs, videos and
screenshots on Bitrise.

Instructions
1.	 Add an Android Build for UI Testing Step. Set the input variables:

•	 Project Location: Use the default $BITRISE_SOURCE_DIR
or $PROJECT_LOCATION. You can set a specific path but the
automatically exposed Environment Variables are usually the
best option.

•	 Variant: Use the $VARIANT Enviromment Variable, or specify a
variant manually.

•	 Module: Specify one or leave it blank to run tests in all of the
modules.

2.	 Add a [BETA] Virtual Device Testing for Android Step. Set the input
variables:
•	 Test type: instrumentation (or robo or gameloop).
•	 (Optional) Test devices

(default: NexusLowRes,24,en,portrait).

3.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes
the test results available in the Test Reports add-on.

 bitrise.yml

↓

https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/testing/test-reports.html
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-virtual-device-tests.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-virtual-device-tests.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://devcenter.bitrise.io/en/testing/device-testing-for-android.html
https://bitrise.io/integrations/steps/android-build-for-ui-testing
https://www.bitrise.io/integrations/steps/virtual-device-testing-for-android
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/testing/test-reports.html

22

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

Relevant links
•	 Device testing for Android

(Android) Run UI / instrumentation tests
on local emulator
Description
Run UI / instrumentation tests on a local emulator instance.

Instructions
1.	 Add an AVD Manager Step. To customize the emulator, see the

Step configuration.

2.	 Add a Wait for Android emulator Step.

3.	 Add a Gradle Runner Step. Set the input variables:
•	 gradlew file path: for example, ./gradlew.
•	 Gradle task to run: for example,

connectedDebugAndroidTest.

4.	 Add an Export test results to Test Reports add-on Step with the
following inputs:
•	 The name of the test: Emulator tests.
•	 Test result base path: $BITRISE_SOURCE_DIR/app/build/

outputs/androidTest-results. You might want to adjust
the path based on the module name(s) in your project.

•	 Test result search pattern: *.xml.

5.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes
the test results available in the Test Reports add-on. The failed
tests will be also available under the Test Results tab on the
build details page.

 bitrise.yml

- android-build-for-ui-testing@0:
 inputs:
 - variant: $VARIANT
 - module: $MODULE
- virtual-device-testing-for-android@1:
 inputs:
 - test_type: instrumentation
- deploy-to-bitrise-io@2: {}

- avd-manager@1: {}
- wait-for-android-emulator@1:
- gradle-runner@2:
 inputs:
 - gradlew_path: ./gradlew
 - gradle_task: connectedDebugAndroidTest

↓

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-emulator-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-emulator-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/avd-manager
http://step configuration
https://bitrise.io/integrations/steps/wait-for-android-emulator
https://bitrise.io/integrations/steps/gradle-runner
http://Export test results to Test Reports add-on
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/testing/test-reports.html

23

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(React Native) Run tests
Description
Run tests (for example, Jest).

Instructions
1.	 Add either the Run yarn command or the Run npm command Step

based on your project setup.

2.	 Set the The yarn command to run or The npm command with
arguments to run input to test.

 bitrise.yml
Using yarn:

(Flutter) Run tests
Description
Performs any test in a Flutter project.

Instructions
1.	 Add the Flutter Test Step to your Workflow. Set the input variables:

•	 Project Location: For example, $BITRISE_FLUTTER_PROJECT_
LOCATION.

•	 Check out optional inputs in the Workflow Editor or in the Step
description.

2.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step that makes the
test results available in the Test Reports add-on. The failed tests will be
also available under the Test Results tab on the build details page.

 bitrise.yml

↓
- custom-test-results-export@0:
 inputs:
 - search_pattern: “*.xml”
 - base_path: $BITRISE_SOURCE_DIR/app/build/outputs/
androidTest-results
 - test_name: Emulator tests
- deploy-to-bitrise-io@2:

- yarn@0:
 inputs:
 - command: test

- flutter-test@1:
 inputs:
 - project_location: $BITRISE_FLUTTER_PROJECT_LOCATION
- deploy-to-bitrise-io@2: {}

- npm@1:
 inputs:
 - command: test

Using npm:

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/rn-tests.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://www.bitrise.io/integrations/steps/yarn
https://bitrise.io/integrations/steps/npm
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/flutter-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://bitrise.io/integrations/steps/flutter-test
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/testing/test-reports.html

24

PL
UG

 &
 P
LA

Y
MO

DU
LA

R

C
ha

pt
er

 4
: R

ec
ip

es

(React Native) Expo: Build using Turtle CLI
Description
Publish an app to Expo’s servers and build an iOS App Store .ipa and
Android .aab files from your Expo project using Turtle CLI.

Prerequisites
1.	 Generate an iOS Distribution Certificate and an App Store Provisioning

Profile based on the Generating iOS code signing files guide.

2.	 Generate an Android Keystore by following the Android code
signing with Android Studio guide.

3.	 Make sure you can Publish your Expo project locally.

Instructions
1.	 Upload the project’s iOS Distribution Certificate and App Store

Provisioning Profile on the Bitrise project’s Workflow Editor / Code
signing tab.

2.	 Upload the project’s Android Keystore on the Bitrise project’s
Workflow Editor / Code signing tab.

3.	 Create a Secret (IOS_DEVELOPMENT_TEAM) with the ID of the
iOS Development Team, issued the project’s Certificate and
Provisioning Profile.

4.	 Store the Expo account, used for publishing the Expo app
and fetching the app manifest, in EXPO_USERNAME and
EXPO_PASSWORD secrets.

5.	 Copy-paste envs from bitrise.yml below to your Workflow.

6.	 Copy-paste steps from bitrise.yml below to your Workflow.
•	 The built .ipa and .aab files are exposed via

BITRISE_IPA_PATH and BITRISE_AAB_PATH env vars.

 bitrise.yml

 turtle_build:
 envs:
 - KEYSTORE_PATH: /tmp/keystore.jks
 - KEYSTORE_ALIAS: $BITRISEIO_ANDROID_KEYSTORE_ALIAS
 - EXPO_ANDROID_KEYSTORE_PASSWORD: $BITRISEIO_
ANDROID_KEYSTORE_PASSWORD
 - EXPO_ANDROID_KEY_PASSWORD: $BITRISEIO_ANDROID_
KEYSTORE_PRIVATE_KEY_PASSWORD
 - PROFILE_PATH: /tmp/profile.mobileprovision
 - CERTIFICATE_PATH: /tmp/certificate.p12
 ...
...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

4.4
Building

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/rn-expo-turtle-build.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://docs.expo.dev/classic/turtle-cli/
https://devcenter.bitrise.io/en/code-signing/ios-code-signing/generating-ios-code-signing-files.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing/android-code-signing-with-android-studio.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing/android-code-signing-with-android-studio.html
https://docs.expo.dev/classic/turtle-cli/#publish-your-project

25

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(Android) Run Lint
Description
Runs Lint on your Android project and generates a report with the results.

Instructions
1.	 Add the Android Lint Step. Set the input variables:

•	 Project Location: Use the default $BITRISE_SOURCE_DIR
or $PROJECT_LOCATION. You can set a specific path but the
automatically exposed Environment Variables are usually the
best option.

•	 Variant: Use the $VARIANT Enviromment Variable, or specify
a variant manually.

•	 Module: Specify one or leave it blank to run lint in all of the modules.

2.	 Add a Deploy to Bitrise.io Step. This Step uploads the lint report as
a build artifact.

bitrise.yml

(Flutter) Run Dart Analyzer
Description
Runs the Dart Analyzer.

Instructions
1.	 Add the Flutter Analyze Step to your Workflow.

bitrise.yml

- android-lint@0:
 inputs:
 - variant: $VARIANT
- deploy-to-bitrise-io@2: {}

- flutter-analyze@0:
 inputs:
 - project_location: $BITRISE_FLUTTER_PROJECT_LOCATION

4.5
Linting

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-lint.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://www.bitrise.io/integrations/steps/android-lint
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://devcenter.bitrise.io/en/builds/managing-build-files/build-artifacts-online.html
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/flutter-dart-analyzer.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ssh-and-clone.md
https://www.bitrise.io/integrations/steps/flutter-analyze

26

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(iOS) Deploy to App Store Connect / TestFlight
Description
Archiving the app and uploading to App Store Connect to either
release it to App Store or to TestFlight.

Prerequisites
1.	 The source code is cloned and the dependencies (for example,

Cocoapods, Carthage) are installed.

2.	 You have code signing set up. See iOS Code Signing for more details.

3.	 You have Apple Developer connection set up. See Apple services
connection for more details.

Instructions
1.	 (Optional) Add the Set Xcode Project Build Number Step. Set the

input variables:
•	 Info.plist file path: for example, MyApp/Info.plist.
•	 Build Number: for example, 42.
•	 Version Number: for example, 1.1.

2.	 Add the Xcode Archive & Export for iOS Step. Set the input variables:
•	 Project path: by default $BITRISE_PROJECT_PATH. Normally,

you don’t have to change this.
•	 Scheme: by default $BITRISE_SCHEME. This Environment

Variable stores the scheme that you set when adding the app.
The scheme always must be a shared scheme.

•	 Distribution method: it must be set to app-store.

3.	 Add the Deploy to App Store Connect - Application Loader
(formerly iTunes Connect) Step. Set the input variables:
•	 Bitrise Apple Developer Connection: for example, api_key.

Alternatively you can use the Deploy to App Store Connect with Deliver
(formerly iTunes Connect) Step as well, which gives you more options.

bitrise.yml

- set-xcode-build-number@1:
 inputs:
 - build_short_version_string: ‘1.0’
 - plist_path: BitriseTest/Info.plist
- xcode-archive@5:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
 - scheme: $BITRISE_SCHEME
 - automatic_code_signing: api_key
 - distribution_method: app-store
- deploy-to-itunesconnect-application-loader@1:
 inputs:
 - connection: api_key

4.6
Deploying

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-appstore.md
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html
https://devcenter.bitrise.io/en/accounts/connecting-to-services/apple-services-connection.html
https://devcenter.bitrise.io/en/accounts/connecting-to-services/apple-services-connection.html
https://www.bitrise.io/integrations/steps/set-xcode-build-number
https://bitrise.io/integrations/steps/xcode-archive
https://bitrise.io/integrations/steps/deploy-to-itunesconnect-application-loader
https://bitrise.io/integrations/steps/deploy-to-itunesconnect-application-loader
https://bitrise.io/integrations/steps/deploy-to-itunesconnect-deliver
https://bitrise.io/integrations/steps/deploy-to-itunesconnect-deliver

27

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(Android) Deploy to Google Play (Internal,
Alpha, Beta, Production)
Description
Building the app and uploading to Google Play to internal, alpha, beta
or production track.

Prerequisites
1.	 An Android keystore file is uploaded to Bitrise. For details, see

Android code signing using the Android Sign Step.

2.	 Google Play API Access is set up. For details, see Deploying
Android apps to Bitrise and Google Play.

Instructions
1.	 (Optional) Add the Change Android versionCode and

versionName Step. Set the input variables:
•	 Path to the build.gradle file: The default value is $PROJECT_

LOCATION/$MODULE/build.gradle and in most cases you
don’t have to change it.

•	 New versionName: for example, 1.0.1.
•	 New versionCode: for example, 42.

2.	 Add the Android Build Step and set the following inputs:
•	 Build type: Set this to aab.
•	 Variant: Use release, debug, or one of your custom variants if

you have any.
•	 Module: for example $MODULE.

3.	 Add the Android Sign Step.

4.	 Add the Google Play Deploy Step and set the following inputs:
•	 Service Account JSON key file path: $BITRISEIO_SERVICE_

ACCOUNT_JSON_KEY_URL.
•	 Package name: for example, com.your.package.name.
•	 Track: Choose one of internal, alpha, beta, or production.
•	 Status: The status of a release. For more information, see the

API reference. Recommended draft for production and
completed for internal test builds.

•	 Check the other options in the Workflow Editor or in the Step
documentation.

bitrise.yml

- change-android-versioncode-and-versionname@1:
 inputs:
 - new_version_name: 1.0.1
 - new_version_code: ‘42’
 - build_gradle_path: “$PROJECT_LOCATION/$MODULE/
build.gradle”

↓

https://devcenter.bitrise.io/en/code-signing/android-code-signing/android-code-signing-using-the-android-sign-step.html
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access
https://www.bitrise.io/integrations/steps/change-android-versioncode-and-versionname
https://www.bitrise.io/integrations/steps/change-android-versioncode-and-versionname
https://bitrise.io/integrations/steps/android-build
https://bitrise.io/integrations/steps/sign-apk
https://bitrise.io/integrations/steps/google-play-deploy
https://developers.google.com/android-publisher/api-ref/rest/v3/edits.tracks#Status

28

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

- android-build@1:
 inputs:
 - project_location: $PROJECT_LOCATION
 - module: $MODULE
 - build_type: aab
 - variant: release
- sign-apk@1: {}
- google-play-deploy@3:
 inputs:
 - service_account_json_key_path: $BITRISEIO_SERVICE_
ACCOUNT_JSON_KEY_URL
 - package_name: io.bitrise.sample.android
 - status: completed
 - track: internal

↓

(iOS) Deploy to bitrise.io
Description
Build and distribute your app to testers via Bitrise.io Ship.

Prerequisites
1.	 You have code signing set up. See iOS Code Signing for more details.

Instructions
1.	 Add the Xcode Archive & Export for iOS Step.

Set the input variables:
•	 Project path: by default, $BITRISE_PROJECT_PATH.
•	 Scheme: by default, $BITRISE_SCHEME.
•	 Distribution method: development, ad-hoc or enterprise.

2.	 Add the Deploy to Bitrise.io - Apps, Logs, Artifacts Step.

bitrise.yml

- xcode-archive@5:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
 - scheme: $BITRISE_SCHEME
 - automatic_code_signing: apple-id
 - distribution_method: development
- deploy-to-bitrise-io@2: {}

https://devcenter.bitrise.io/en/deploying/deploying-with-ship.html
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html
https://bitrise.io/integrations/steps/xcode-archive
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io

29

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(Android) Deploy to Bitrise.io
Description
Build and distribute your app to testers via the Bitrise.io Ship add-on.

Prerequisites
1.	 If you want to deploy a release build, don’t forget to set up code

signing on Bitrise to build and sign the APK with your release key.

Instructions
1.	 Add the Android Build Step and set the following inputs:

•	 Build type: Set this to apk.
•	 Variant: Use release, debug, or one of your custom variants if

you have any.

2.	 If you build a release variant, add the Android Sign Step. You can
skip this if you plan to deploy an unsigned debug variant.

3.	 Add a Deploy to Bitrise.io - Apps, Logs, Artifacts Step.

bitrise.yml

(iOS) Deploy to Firebase App Distribution
Description
Build and distribute your app to testers via Firebase App Distribution.

Prerequisites
1.	 An existing Firebase project where your exact bundle ID is

registered. Follow the Firebase documentation for details.

2.	 Obtain a token from Firebase by running firebase login:ci
locally. See the Firebase CLI docs for more details.

3.	 Add this token as a secret your Bitrise project with the name
FIREBASE_TOKEN.

4.	 Get your Firebase App ID from your project’s General Settings
page and pass this value as an input to the firebase-app-
distribution Step.

5.	 Setting up code signing on Bitrise is not part of this guide, please
follow our code signing docs for instructions.

- android-build@1:
 inputs:
 - variant: release
 - build_type: apk
- sign-apk@1: {}
- deploy-to-bitrise-io@2: {}

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-bitrise.md
https://devcenter.bitrise.io/en/deploying/deploying-with-ship/getting-started-with-ship.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing.html
https://bitrise.io/integrations/steps/android-build
https://bitrise.io/integrations/steps/sign-apk
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-firebase.md
https://firebase.google.com/docs/app-distribution/ios/distribute-console
https://firebase.google.com/docs/cli#sign-in-test-cli
https://devcenter.bitrise.io/en/builds/secrets.html
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html#ios-code-signing-53933

30

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

Instructions
1.	 Add the Xcode Archive Step and set the required inputs, such as

scheme, distribution method and the desired code signing method.

2.	 Add the Firebase App Distribution Step and set the following inputs:
•	 Firebase token: use the secret env var previously defined:

$FIREBASE_TOKEN.
•	 Firebase App ID: see the Prerequisites section above for details.
•	 Optionally, you can define test groups or individual testers in the

Step inputs.

bitrise.yml

- xcode-archive@5:
 inputs:
 - distribution_method: development
 - scheme: $BITRISE_SCHEME
 - automatic_code_signing: api-key
- firebase-app-distribution@0:
 inputs:
 - firebase_token: $FIREBASE_TOKEN
 - app: 1:1234567890:ios:321abc456def7890 # your app
ID from Firebase
 - testers: email@company.com # optional
 - groups: qa-team #optional

↓

(Android) Deploy to Firebase App Distribution
Description
Build and distribute your app to testers via Firebase App Distribution.
This example builds and deploys an APK, but the workflow can be
tweaked to distribute AAB instead.

Prerequisites
1.	 An existing Firebase project where your exact bundle ID is

registered. Follow the Firebase documentation for details.

2.	 Obtain a token from Firebase by running firebase login:ci
locally. See the Firebase CLI docs for more details.

3.	 Add this token as a secret your Bitrise project with the name
FIREBASE_TOKEN.

4.	 Get your Firebase App ID from your project’s General Settings
page and pass this value as an input to the firebase-app-
distribution Step.

5.	 Settings up code signing on Bitrise is not part of this guide, please
follow our code signing docs for instructions.

↓

https://bitrise.io/integrations/steps/xcode-archive
https://bitrise.io/integrations/steps/firebase-app-distribution
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-firebase.md
https://firebase.google.com/docs/app-distribution/ios/distribute-console
https://firebase.google.com/docs/cli#sign-in-test-cli
https://devcenter.bitrise.io/en/builds/secrets.html
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html#ios-code-signing-53933

31

MO
DU
LA
R

C
ha

pt
er

 4
: R

ec
ip

es

Instructions
1.	 Add the Android Build Step and set the following inputs:

•	 Build type: Set this to apk.
•	 Variant: Use release, debug, or one of your custom variants if

you have any.

2.	 If you build a release variant, add the Android Sign Step. You can
skip this if you plan to deploy an unsigned debug variant.

3.	 Add the Firebase App Distribution Step and set the following inputs:
•	 Firebase token: use the secret env var previously defined:

$FIREBASE_TOKEN.
•	 App path: this should point to the APK that the previous steps

have built and signed. By default, it’s located at $BITRISE_
DEPLOY_DIR/app-release-bitrise-signed.apk, but the
exact file name might be different based on your project config.

•	 Firebase App ID: see the Prerequisites section above for details.
•	 Optional: you can define test groups or individual testers

in the Step inputs.

bitrise.yml

- android-build@1:
 inputs:
 - variant: release
 - build_type: apk
- sign-apk@1: {}
- firebase-app-distribution@0:
 inputs:
 - firebase_token: $FIREBASE_TOKEN
 - app_path: $BITRISE_DEPLOY_DIR/app-release-bitrise-
signed.apk
 - app: your_app_id_from_firebase
 - testers: email@company.com # optional
 - groups: qa-team #optional

↓

(iOS) Deploy to Visual Studio App Center
Description
Build and distribute your app to testers via AppCenter.

Prerequisites
1.	 An existing Visual Studio App Center project where your

 app is registered.

2.	 Adding the API token as a Secret your Bitrise project with the
name APPCENTER_API_TOKEN.

3.	 You have code signing set up. See iOS Code Signing for more details.

↓

https://bitrise.io/integrations/steps/android-build
https://bitrise.io/integrations/steps/sign-apk
https://bitrise.io/integrations/steps/firebase-app-distribution
https://docs.microsoft.com/en-us/appcenter/dashboard/
https://devcenter.bitrise.io/en/builds/secrets.html
https://devcenter.bitrise.io/en/code-signing/ios-code-signing.html

32

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

Instructions
1.	 Add the Xcode Archive & Export for iOS Step. Set the input variables:

•	 Project path: by default $BITRISE_PROJECT_PATH.
•	 Scheme: by default $BITRISE_SCHEME.
•	 Distribution method: development, ad-hoc or enterprise.

2.	 Add the AppCenter iOS Deploy Step and set the following inputs:
•	 API Token: $APPCENTER_API_TOKEN.
•	 Owner name: for example, my-company.
•	 App name: for example, my-app Use the App Center CLI to get

the app name since it might not be the same as the one you can
see on the Visual Studio App Center website.

•	 Check out other options in the Step documentation or in the
Workflow Editor.

bitrise.yml

- xcode-archive@5:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
 - scheme: $BITRISE_SCHEME
 - automatic_code_signing: apple-id
 - distribution_method: development
- appcenter-deploy-ios@2:
 inputs:
 - owner_name: my-company
 - app_name: my-app
 - api_token: $APPCENTER_API_TOKEN

↓

(Android) Deploy to Visual Studio App Center
Description
Build and distribute your app to testers via AppCenter.

Prerequisites
1.	 An existing Visual Studio App Center project where your

 app is registered.

2.	 Adding the API token as a Secret your Bitrise project with the
name APPCENTER_API_TOKEN.

3.	 If you want to deploy a release build, don’t forget to set up code
signing on Bitrise to build and sign the APK with your release key.

Instructions
1.	 Add the Android Build Step and set the following inputs:

•	 Build type: Set this to apk.
•	 Variant: Use release, debug, or one of your custom variants if

you have any.

↓

https://bitrise.io/integrations/steps/xcode-archive
https://www.bitrise.io/integrations/steps/appcenter-deploy-ios
https://github.com/Microsoft/appcenter-cli
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-appcenter.md
https://docs.microsoft.com/en-us/appcenter/dashboard/
https://devcenter.bitrise.io/en/builds/secrets.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing.html
https://bitrise.io/integrations/steps/android-build

33

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

2.	 If you build a release variant, add the Android Sign Step. You can
skip this if you plan to deploy an unsigned debug variant.

3.	 Add the AppCenter Android Deploy Step and set the following inputs:
•	 API Token: $APPCENTER_API_TOKEN.
•	 Owner name: For example, my-company.
•	 App name: For example, my-app. Use the App Center CLI to

get the app name since it might not be the same as the one you
can see on the Visual Studio App Center website.

•	 Check out other options in the Step documentation or in the
Workflow Editor.

bitrise.yml

- android-build@1:
 inputs:
 - variant: release
 - build_type: apk
- sign-apk@1: {}
- appcenter-deploy-android@2:
 inputs:
 - owner_name: my-company
 - app_name: my-app
 - app_path: $BITRISE_APK_PATH
 - api_token: $APPCENTER_API_TOKEN

↓

(iOS/Android) Slack - send build status
Description
Sending a slack message to Slack with the build status after
a build has finished.

Prerequisites
1.	 You have a Slack webhook set up and added to Env Vars (for example,

$SLACK_WEBHOOK). For details, see Configuring Slack integration.

Instructions
1.	 Add the Send a Slack message Step. Set the input variables:

•	 Slack Webhook URL: for example, $SLACK_WEBHOOK.
•	 Target Slack channel, group or username: for example,

#build-notifications.
•	 Check out the other optional input variables in the Workflow

Editor or in the Step description.

bitrise.yml

4.7
Notifications

- slack@4:
 inputs:
 - channel: “#build-notifications”
 - webhook_url: $SLACK_WEBHOOK

https://bitrise.io/integrations/steps/sign-apk
https://www.bitrise.io/integrations/steps/appcenter-deploy-android
https://github.com/Microsoft/appcenter-cli
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/slack-send-build-status.md
https://devcenter.bitrise.io/en/builds/configuring-build-settings/configuring-slack-integration.html
https://www.bitrise.io/integrations/steps/slack

34

MO
DU
LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(iOS/Android) Send QR code to Slack
Description
Sending a QR code of the iOS or Android build uploaded to bitrise.io
to Slack.

Prerequisites
1.	 You have your iOS or Android app archived.
2.	 You have a Slack webhook set up and added to Env Vars (for example,

$SLACK_WEBHOOK). For details, see Configuring Slack integration.

Instructions
1.	 Add the Deploy to Bitrise.io - Apps, Logs, Artifacts Step.
2.	 Add the Create install page QR code Step.
3.	 Add the Send a Slack message Step. Set the input variables:

•	 Slack Webhook URL: for example, $SLACK_WEBHOOK.
•	 Target Slack channel, group or username: for example,

#build-notifications.
•	 A URL to an image file that will be displayed as a thumbnail:

$BITRISE_PUBLIC_INSTALL_PAGE_QR_CODE_IMAGE_URL.

bitrise.yml

- deploy-to-bitrise-io@2: {}
- create-install-page-qr-code@1: {}
- slack@4:
 inputs:
 - channel: “#build-notifications”
 - thumb_url: $BITRISE_PUBLIC_INSTALL_PAGE_QR_CODE_
IMAGE_URL
 - webhook_url: $SLACK_WEBHOOK

Relevant links
•	 Deploying an iOS app to Bitrise.io
•	 Deploying Android apps to Bitrise and Google Play

GitHub pull request - send the build QR code
Description
Sending a QR code of the iOS or Android build uploaded to bitrise.io
to Slack.

Prerequisites
1.	 You have your iOS or Android app archived.
2.	 Generate a GitHub personal access token and add it as a Secret

($GITHUB_ACCESS_TOKEN). Make sure to select the repo scope.

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/slack-send-qr-code.md
https://devcenter.bitrise.io/en/builds/configuring-build-settings/configuring-slack-integration.html
https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://www.bitrise.io/integrations/steps/create-install-page-qr-code
https://www.bitrise.io/integrations/steps/slack
https://devcenter.bitrise.io/en/deploying/ios-deployment/deploying-an-ios-app-to-bitrise-io.html
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#deploying-an-android-app-to-bitrise-io-43303
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/github-pull-request-build-qr-code.md
https://github.com/settings/tokens

35

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

Instructions
1.	 Add the Deploy to Bitrise.io - Apps, Logs, Artifacts Step.
2.	 Add the Create install page QR code Step.
3.	 Add the Comment on GitHub Pull Request Step. Set the following

input variables:
•	 GitHub personal access token: Set it to the previously created

Secret, $GITHUB_ACCESS_TOKEN.

bitrise.yml

- deploy-to-bitrise-io@2: {}
- create-install-page-qr-code@1: {}
- comment-on-github-pull-request@0:
 inputs:
 - body: |-
 ![QR code]($BITRISE_PUBLIC_INSTALL_PAGE_QR_CODE_
IMAGE_URL)

 $BITRISE_PUBLIC_INSTALL_PAGE_URL
 - personal_access_token: $GITHUB_ACCESS_TOKEN

(iOS) Cache Swift Package Manager
dependencies (Beta)
Description
Cache the resolved Swift package dependencies with the new key-
based caching Steps, Save Cache and Restore Cache.

Instructions
1.	 Add the Restore SPM Cache Step to the Workflow.
2.	 Add one of the usual iOS build Steps, such as Xcode Test for iOS.
3.	 Add the Save SPM Cache Step.

Fine tune cache behaviour
The SPM specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps.
You can always check out what key and path settings the SPM cache
Step uses: Github code snippet.

bitrise.yml

4.8
Caching

- restore-spm-cache@1: {}
- xcode-test@5: {}
- save-spm-cache@1: {}

↓

https://www.bitrise.io/integrations/steps/deploy-to-bitrise-io
https://www.bitrise.io/integrations/steps/create-install-page-qr-code
https://www.bitrise.io/integrations/steps/comment-on-github-pull-request
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-spm.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-spm.md
https://bitrise.io/integrations/steps/restore-spm-cache
https://www.bitrise.io/integrations/steps/xcode-test
https://bitrise.io/integrations/steps/save-spm-cache
https://bitrise.io/integrations/steps/restore-cache
https://bitrise.io/integrations/steps/save-cache
https://github.com/bitrise-steplib/bitrise-step-save-spm-cache/blob/main/step/step.go#L13-L26

36

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(iOS) Cache CocoaPods dependencies (Beta)
Description
Cache the contents of the Pods folder with the new key-based
caching Steps, Save Cache and Restore Cache.

Instructions
1.	 Add the Restore Cocoapods Cache Step to the Workflow.
2.	 Add the Run CocoaPods install Step.
3.	 Add the Save Cocoapods Cache Step.

Fine tune cache behaviour
The Cocoapods specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps. You can always check out what key and path
settings the Cocoapods cache Step uses: Github code snippet.

bitrise.yml

(iOS) Cache Carthage dependencies (Beta)
Description
Cache the contents of the Carthage folder with the new key-based
caching Steps, Save Cache and Restore Cache.

Instructions
1.	 Add the Restore Carthage Cache Step to the Workflow.
2.	 Add the Carthage Step.
3.	 Add the Save Carthage Cache Step.

Fine tune cache behaviour
The Carthage specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps. You can always check out what key and path
settings the Carthage cache Step uses: Github code snippet.

bitrise.yml

- restorecocopods-cache@1: {}
- cocoapods-install@2: {}
- save-cocopods-cache@1: {}

- restore-carthage-cache@1: {}
- carthage@1: {}
- save-carthage-cache@1: {}

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://bitrise.io/integrations/steps/restore-cocoapods-cache
https://bitrise.io/integrations/steps/cocoapods-install
https://bitrise.io/integrations/steps/save-cocoapods-cache
https://bitrise.io/integrations/steps/restore-cache
https://bitrise.io/integrations/steps/save-cache
https://github.com/bitrise-steplib/bitrise-step-save-cocoapods-cache/blob/main/step/step.go#L13-L23
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-carthage.md
https://bitrise.io/integrations/steps/restore-carthage-cache
https://bitrise.io/integrations/steps/carthage
https://bitrise.io/integrations/steps/save-carthage-cache
https://bitrise.io/integrations/steps/restore-cache
https://bitrise.io/integrations/steps/save-cache
https://github.com/bitrise-steplib/bitrise-step-save-carthage-cache/blob/main/step/step.go#L14-L34

37

MO
DU

LA
R

MO
DU

LA
R

C
ha

pt
er

 4
: R

ec
ip

es

(Android) Cache Gradle dependencies (Beta)
Description
Cache project dependencies that Gradle downloads with the new
key-based caching Steps, Save Cache and Restore Cache.

Instructions
1.	 Add the Restore Gradle Cache Step to the Workflow.
2.	 Add the usual Android Steps, such as Android Build.
3.	 Add the Save Gradle Cache Step.

Fine tune cache behaviour
The Gradle specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps. You can always check out what key and path
settings the Gradle cache Step uses: Github code snippet.

bitrise.yml

(Android) Cache Gradle build tasks (Beta)
Description
Cache Gradle tasks with the new key-based caching Steps, Save
Gradle Cache and Restore Gradle Cache.

Prerequisites
Make sure to read how to cache Gradle dependencies and set up
the Workflow according to the guide. Caching build tasks is an opt-in
feature that builds on caching Gradle dependencies.

Instructions
Gradle build cache is a feature that enables the storage of the task
outputs in the shared Gradle cache folder. Caching this folder in CI
builds means that Gradle can reuse the task outputs from previous
builds and can skip running the tasks when the inputs are unchanged.
This is an opt-in feature. There are two ways to enable the build cache
in a Gradle project:
•	 add org.gradle.caching = true to the gradle.properties

file in the project.
•	 pass the --build-cache CLI flag to each Gradle execution.

- restore-gradle-cache@1: {}
- android-build@1:
 inputs:
 - variant: debug
 - build_type: apk
- save-gradle-cache@1: {}

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-key-cache.md
https://bitrise.io/integrations/steps/restore-gradle-cache
https://bitrise.io/integrations/steps/android-build
https://bitrise.io/integrations/steps/save-gradle-cache
https://bitrise.io/integrations/steps/restore-cache
https://bitrise.io/integrations/steps/save-cache
https://github.com/bitrise-steplib/bitrise-step-save-gradle-cache/blob/main/step/step.go#L14-L53
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-key-cache-build-tasks.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-key-cache.md
https://docs.gradle.org/current/userguide/build_cache.html

38

MO
DU

LA
R

MO
DU
LA
R

C
ha

pt
er

 4
: R

ec
ip

es

If you choose the second option and use Bitrise Android Steps, there
is a Step input for additional Gradle arguments where you can define
--build-cache.

bitrise.yml

- restore-gradle-cache@1: {}
- android-build@1:
 inputs:
 - variant: debug
 - build_type: apk
 - arguments: --build-cache
- save-gradle-cache@1: {}

↓

(Flutter) Cache Dart dependencies (Beta)
Description
Cache the contents of the Dart pub system cache folder with the new
key-based caching Steps, Save Dart Cache and Restore Dart Cache.

Instructions
1.	 Add the Restore Dart Cache Step to the Workflow.
2.	 Add one of Flutter Steps to the workflow, such as Flutter Build.
3.	 Add the Save Dart Cache Step.

Fine tune cache behaviour
The Dart specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps. You can always check out what key and path
settings the Dart cache Step uses: Github code snippet.

bitrise.yml

(React Native) Cache NPM dependencies (Beta)
Description
Cache the contents of the node_modules with the new key-based
caching Steps, Save Cache and Restore Cache.

Instructions
1.	 Add the Restore NPM Cache Step to the Workflow.

- restore-dart-cache@1: {}
- flutter-build@0: {}
- save-dart-cache@1: {}

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/flutter-key-cache.md
https://dart.dev/tools/pub/glossary#system-cache
https://bitrise.io/integrations/steps/restore-dart-cache
https://www.bitrise.io/integrations/steps/flutter-build
https://bitrise.io/integrations/steps/save-dart-cache
https://bitrise.io/integrations/steps/restore-cache
https://bitrise.io/integrations/steps/save-cache
https://github.com/bitrise-steplib/bitrise-step-save-dart-cache/blob/main/step/step.go#L13-L22
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/rn-key-cache-dependencies.md
https://github.com/bitrise-steplib/bitrise-step-restore-npm-cache

39

C
ha

pt
er

 4
: R

ec
ip

es

2.	 Add either the Run yarn command Step or the Run npm command
Step based on your project setup. Set the input variables:
•	 Set the The yarn command to run or The npm command with

arguments to run input to install.
3.	 Add the Save NPM Cache Step.

Fine tune cache behaviour
The NPM specific cache Steps use optimal cache key and path
configurations maintained by Bitrise. If you want full control over what
should be cached then please check out the generic Restore Cache
and Save Cache Steps. You can always check out what key and path
settings the NPM cache Step uses: Github code snippet.

bitrise.yml

- restore-npm-cache@1: {}
- npm@1:
 inputs:
 - command: install
- save-npm-cache@1: {}

↓

MO
DU

LA
R

Advanced key-based cache recipes
These workflow recipes are based on the Save cache and Restore
cache Steps. For recipes about the most popular platforms and
dependency managers, check out the Key-based caching section in
the README.

Key templates
The Save cache and Restore cache Steps use a string key when
uploading and downloading a cache archive. To always download
the most relevant cache archive for each build, the Cache key input
can contain template elements. The Steps evaluate the key template
at runtime and the final key value can change based on the build
environment or files in the repo.

The following variables are supported in the Cache key input:

•	 cache-key-{{ .Branch }}: Current git branch the build runs on.

•	 cache-key-{{ .CommitHash }}: SHA-256 hash of the git commit
the build runs on.

•	 cache-key-{{ .Workflow }}: Current Bitrise workflow name
(eg. primary).

•	 {{ .Arch }}-cache-key: Current CPU architecture (amd64 or arm64).

•	 {{ .OS }}-cache-key: Current operating system (linux or darwin).

Functions available in a template:

checksum: This function takes one or more file paths and computes
the SHA256 checksum of the file contents. This is useful for creating
unique cache keys based on files that describe content to cache.

https://www.bitrise.io/integrations/steps/yarn
https://github.com/bitrise-steplib/steps-npm
https://github.com/bitrise-steplib/bitrise-step-save-npm-cache
https://github.com/bitrise-steplib/bitrise-step-restore-cache
https://github.com/bitrise-steplib/bitrise-step-save-cache
https://github.com/bitrise-steplib/bitrise-step-save-npm-cache/blob/main/step/step.go#L13-L25
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/key-cache-advanced.md
https://github.com/bitrise-io/workflow-recipes/blob/main/README.md
https://en.wikipedia.org/wiki/Checksum

40

C
ha

pt
er

 4
: R

ec
ip

es

Examples of using checksum:

•	 cache-key-{{ checksum “package-lock.json” }}

•	 cache-key-{{ checksum “**/Package.resolved” }}

•	 cache-key-{{ checksum “**/*.gradle*”
“gradle.properties” }}

getenv: This function returns the value of an environment variable or
an empty string if the variable is not defined.

Examples of getenv:

•	 cache-key-{{ getenv “PR” }}

•	 cache-key-{{ getenv “BITRISEIO_PIPELINE_ID” }}

Skip saving the cache in PR builds (restore only)
If you want builds triggered by pull requests to only restore the cache
and skip saving it, you can run the Save cache Step conditionally:

Separate caches for each OS and architecture
Cache is not guaranteed to work across different Bitrise Stacks
(different OS or same OS but different CPU architecture). If a
Workflow runs on different stacks, it’s a good idea to include the OS
and architecture in the Cache key input:

Multiple independent caches
You can add multiple instances of the cache Steps to a Workflow:

steps:
- restore-cache@2:
 inputs:
 - key: node-modules-{{ checksum “package-lock.json” }}

Build steps

- save-cache@1:
 run_if: “.IsCI | and (not .IsPR)” # Condition that is
false in PR builds
 inputs:
 - key: node-modules-{{ checksum “package-lock.json” }}
 - paths: node_modules

steps:
- save-cache@1:
 inputs:
 - key: ‘{{ .OS }}-{{ .Arch }}-npm-cache-{{ checksum
“package-lock.json” }}’
 - path: node_modules

↓

41

C
ha

pt
er

 4
: R

ec
ip

es

steps:
- save-cache@1:
 title: Save NPM cache
 inputs:
 - paths: node_modules
 - key: npm-cache-{{ checksum “package-lock.json” }}
- save-cache@1:
 title: Save Python cache
 inputs:
 - paths: venv/
 - key: pip-cache-{{ checksum “requirements.txt” }}

workflows:
 pr-validation:
 steps:
 - restore-cache@2:
 inputs:
 - key: |-
 node-modules-{{ checksum “package-lock.
json” }}
 node-modules-
 # Rest of the PR validation workflow

 cache-warm-up:
 description: This Workflow should either be run
on a scheduled basis or triggered by a push event on the
main branch.
 steps:
 # Build steps
 - save-cache@1:
 inputs:
 - key: node-modules-{{ checksum “package-
lock.json” }}
 - paths: node_modules/

↓

Cache warm-up for pull requests
Caching works best when the cached content is up to date and
contains useful data for dependency managers and build systems.
It’s a good idea to run a Workflow periodically that builds the project
from the latest code on the main branch and saves the result in the
cache. This way, other builds triggered by pull requests can restore
an up-to-date cache.

By including a checksum in the Cache key input, the Save cache Step
will save multiple unique cache archives when the project files change
(instead of overriding the previous cache). This way PRs not targeting
the latest state of the main branch can still download a relevant
cache archive.

42

C
ha

pt
er

 4
: R

ec
ip

es

cache-{{ .Workflow }}
cache-{{ getenv “BITRISEIO_GIT_BRANCH_DEST” }}
cache-

Restore cache from the PR target branch
If you have a setup where the cache key is based on the current
workflow (such as cache-{{ .Workflow }}), then you can configure
the Restore Step with the following keys:

The keys listed in the Step input are processed in priority order. If there
is a cache entry for the exact same branch, the first rule will match
that. You can also compute the cache key of the pull requests’s target
branch (such as main or trunk) via the BITRISEIO_GIT_BRANCH_DEST
env var, which is automatically set for PR builds. Restoring the cache
from the target branch can be useful when there are multiple long-
lived branches and PRs are targeting different branches.

MO
DU

LA
R

(Android) Turn on Gradle build profiling
Description
Generate and store a performance report of every Gradle build to spot
build speed issues or compare different builds.

Instructions
No matter what Android or Gradle Step you use in your Bitrise
Workflow, there is an option to define additional command line
arguments for Gradle. Add --profile to this input to generate a
performance report of the Gradle tasks. In the example below, we are
adding the argument to the Android Unit Test Step.

To sum up the procedure:

1.	 Add the Android Unit Test Step to your Workflow.

2.	 Add a Script Step to compress the reports and copy the ZIP file to
the deploy directory.

3.	 Trigger a manual build and download and open the HTML report.

4.	 Check the various aspects of the build in the report.

Adding the Android Unit Test Step
Add an Android Unit Test Step to your Workflow. Set the necessary
input values:

•	 Project location: “$PROJECT_LOCATION”

•	 Module: “$MODULE”

•	 Variant: “$VARIANT”

•	 Arguments: “--profile”

4.9
Optimisation

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/gradle-build-profiling.md
https://bitrise.io/integrations/steps/android-unit-test
https://bitrise.io/integrations/steps/script
https://bitrise.io/integrations/steps/android-unit-test

43

C
ha

pt
er

 4
: R

ec
ip

es

#!/usr/bin/env bash
fail if any commands fails
set -e
debug log
set -x

zip -r $BITRISE_DEPLOY_DIR/gradle-profile.zip $PROJECT_
LOCATION/build/reports/profile

Compressing the report files and copying the ZIP file
Add a Script Step to the end of the Workflow in order to compress the
report files and copy the ZIP file to the deploy directory:

Gradle creates the HTML report in build/reports/profile/, so we need
to take all files in that folder (HTML, CSS and JS files), compress them,
and move the ZIP archive to $BITRISE_DEPLOY_DIR. Files in this
folder can be accessed on the build page’s Apps & Artifacts tab.

Downloading the report file
Trigger a manual build of the Workflow you edited previously.
Download and unarchive gradle-profile.zip, then open the HTML
report in your browser.

Checking the build report
You can check various aspects of a build in the report:

•	 The Summary tab shows time spent on things other than task
execution.

•	 The Task execution tab lists all tasks sorted by execution time.

•	 Cached tasks are marked as UP-TO-DATE. This helps to fine-tune
the Bitrise Cache Steps by comparing the reports of multiple builds.

↓

↓

https://devcenter.bitrise.io/builds/caching/about-caching-index/

44

C
ha

pt
er

 4
: R

ec
ip

es

- android-unit-test@1:
 inputs:
 - project_location: $PROJECT_LOCATION
 - module: $MODULE
 - arguments: “--profile”
 - variant: $VARIANT
- script@1:
 title: Collect Gradle profile report
 inputs:
 - content: |-
 #!/usr/bin/env bash
 # fail if any commands fails
 set -e
 # debug log
 set -x

 zip -r $BITRISE_DEPLOY_DIR/gradle-profile.zip
$PROJECT_LOCATION/build/reports/profile
- deploy-to-bitrise-io@1: {}

↓

For Gradle optimization ideas, check out this article by Google.

If you only want to display task execution times only in the build log,
you can use the build-time-tracker project.

bitrise.yml

MO
DU

LA
R

Start (parallel) builds from the Workflow
Description
Start one or more builds with specified Workflows from the parent
Workflow and optionally wait for their completion.

Prerequisites
1.	 Make sure you have a valid Bitrise API key in your Secrets

($BITRISE_API_KEY). See Personal access tokens for more details.

2.	 Have Workflow(s) you would like to run in parallel (workflow-1
and workflow-2 in the example).

Instructions
1.	 Add a Bitrise Start Build Step. Set the input variables:

•	 workflows: The Workflow(s) to start. One Workflow per line.
•	 Bitrise Access Token: $BITRISE_API_KEY.

2.	 (Optional) Add any Step you would like to run in parallel in the
parent Workflow while the triggered Workflows are running.

3.	 (Optional) Add a Bitrise Wait for Build Step. Set the input variables:

•	 Bitrise Access Token: $BITRISE_API_KEY.

4.10
Running Steps
& Workflows

↓

https://developer.android.com/studio/build/profile-your-build#using-the-gradle---profile-option
https://github.com/asarkar/build-time-tracker
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/start-builds.md
https://devcenter.bitrise.io/en/accounts/personal-access-tokens.html##
https://www.bitrise.io/integrations/steps/build-router-start
https://www.bitrise.io/integrations/steps/build-router-wait

45

C
ha

pt
er

 4
: R

ec
ip

es

parent-workflow:
 steps:
 - build-router-start@0:
 inputs:
 - workflows: |-
 workflow-1
 workflow-2
 - access_token: $BITRISE_API_KEY
 - script@1:
 inputs:
 - content: echo “Doing something else...”
 - build-router-wait@0:
 inputs:
 - access_token: $BITRISE_API_KEY

↓

With the Steps above you can only start a build for the same app. If
you would like to start a build for an other app, you can use the Trigger
Bitrise workflow Step.

bitrise.yml

↓

46

Technology
Specific Recipes

5Chapter

47

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Pull request
Description
Example Workflow for iOS Pull Request validation.
The Workflow contains:

1.	 Installing Cocoapods and Carthage dependecies.

2.	 Running all unit and UI tests on simulator.

3.	 Building a test app and uploading to bitrise.io.

4.	 Sending the QR code of the test build to the Pull Request.

5.	 Triggering the workflow for Pull Requests.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

meta:
 bitrise.io:
 stack: osx-xcode-15.0.x
 machine_type_id: g2-m1.4core

workflows:
 pull-request:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-cocoapods-cache@1: {}
 - cocoapods-install@2: {}
 - restore-carthage-cache@1: {}
 - carthage@3:
 inputs:
 - carthage_options: “--use-xcframeworks
--platform iOS”
 - restore-spm-cache@1: {}
 - xcode-test@5:
 inputs:
 - log_formatter: xcodebuild
 - xcodebuild_options: “-enableCodeCoverage YES”
 - xcode-archive@5:
 inputs:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

5.1
iOS

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-pull-request-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-carthage-dependencies.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-simulator-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-bitrise.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/github-pull-request-build-qr-code.md

48

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) CI
Description
Example Workflow for commits on the main branch of an iOS app.
The Workflow contains:

1.	 Installing Cocoapods and Carthage dependecies.

2.	 Running all unit and UI tests on simulator.

3.	 Building a test app and uploading to bitrise.io.

4.	 Sending a Slack notification with the build status.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

meta:
 bitrise.io:
 stack: osx-xcode-15.0.x
 machine_type_id: g2-m1.4core

workflows:
 ci:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-cocoapods-cache@1: {}
 - cocoapods-install@2: {}
 - restore-carthage-cache@1: {}
 - carthage@3:
 inputs:
 - carthage_options: “--use-xcframeworks
--platform iOS”
 - restore-spm-cache@1: {}
 - xcode-test@5:
 inputs:
 - log_formatter: xcodebuild
 - xcodebuild_options: “-enableCodeCoverage YES”
 - xcode-archive@5:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
 - scheme: $BITRISE_SCHEME
 - automatic_code_signing: apple-id
...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-ci-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-carthage-dependencies.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-simulator-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-bitrise.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/slack-send-build-status.md

49

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Nightly
Description
Example Workflow for nightly builds for iOS apps.
The Workflow contains:

1.	 Installing Cocoapods and Carthage dependecies.

2.	 Setting the version and build number. By default, the app will get the
build number ($BITRISE_BUILD_NUMBER) as the version code.

3.	 Building a release build and uploading to TestFlight.

4.	 Building a test app and uploading to bitrise.io.

5.	 Sending the QR code of the test build to the Pull Request.

Check out the guide to run scheduled builds.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

meta:
 bitrise.io:
 stack: osx-xcode-15.0.x
 machine_type_id: g2-m1.4core

workflows:
 nightly:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - cocoapods-install@2: {}
 - carthage@3:
 inputs:
 - carthage_options: “--use-xcframeworks
--platform iOS”
 - set-xcode-build-number@1:
 inputs:
 - build_short_version_string: ‘1.0’
 - plist_path: BitriseTest/Info.plist
 - xcode-archive@5:
 inputs:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-nightly-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-carthage-dependencies.md
https://www.bitrise.io/integrations/steps/set-ios-version
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-appstore.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-deploy-to-bitrise.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/github-pull-request-build-qr-code.md
https://devcenter.bitrise.io/en/builds/starting-builds/scheduling-builds.html

50

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Release
Description
Example Workflow for uploading a release draft of an iOS app to the
App Store. The Worklow contains:

1.	 Installing Cocoapods and Carthage dependecies.

2.	 Setting the version number based on env vars passed to build
($VERSION_NUMBER).

3.	 Building a release build and uploading to App Store.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

meta:
 bitrise.io:
 stack: osx-xcode-15.0.x
 machine_type_id: g2-m1.4core

workflows:
 release:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-cocoapods-cache@1: {}
 - carthage@3:
 inputs:
 - carthage_options: “--use-xcframeworks
--platform iOS”
 - set-xcode-build-number@1:
 inputs:
 - build_short_version_string: $VERSION_NUMBER
 - build_version: $BITRISE_BUILD_NUMBER
 - plist_path: BitriseTest/Info.plist
 - recreate-user-schemes@1:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
 - xcode-archive@5:
 inputs:
 - project_path: $BITRISE_PROJECT_PATH
...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-release-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-install-carthage-dependencies.md
http://Setting the version number
https://devcenter.bitrise.io/en/builds/environment-variables.html#setting-a-custom-env-var-when-starting-a-build

51

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Run tests in parallel on multiple
simulators
Description
This example uses the sample-swift-project-with-parallel-ui-test iOS
Open Source sample app, which has some example Unit and UI tests
and uses Test Plans to group the tests.

The example Pipeline config showcases how to run all the test cases of
the project on different iOS simulators.

build_and_run_tests Pipeline runs two Stages sequentially:

1.	 build_tests Stage that runs the xcode_build_for_test
Workflow. This Workflow git clones the sample project and
runs the xcode-build-for-test Step to build the target
and associated tests. The built test bundle is transferred to the
next Stage (run_tests_on_simulators) via the deploy-to-
bitrise-io Step.
Note: xcode-build-for-test Step compresses the built test
bundle and moves the generated zip to the $BITRISE_DEPLOY_
DIR, that directory’s content is deployed to the Workflow artifacts
by default via the deploy-to-bitrise-io Step.

2.	 run_tests Stage runs three Workflows in parallel: run_tests_
on_iPhone, run_tests_on_iPad, and run_tests_on_iPod.
Both of these Workflows use the new xcode-test-without-
building Step, which executes the tests based on the previous
Stage built test bundle. The pre-built test bundle is pulled by the
_pull_test_bundle utility Workflow.

Instructions
1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/sample-swift-project-with-parallel-
ui-test) in the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the master branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Select any of the offered Distribution methods (for example
development, it does not really matter as now we are focusing on
testing).

7.	 Confirm the offered stack, skip choosing the app icon and the
webhook registration and kick off the first build.

8.	 Open the new Bitrise project’s Workflow Editor.

9.	 Go to the bitrise.yml tab and replace the existing bitrise.yml
with the contents of the example bitrise.yml below.

10.	Click the Start/Schedule a Build button, and select the build_
and_run_tests option in the Workflow, Pipeline dropdown
menu at the bottom of the popup. ↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-run-tests-in-parallel-on-multiple-simulators.md
https://github.com/bitrise-io/sample-swift-project-with-parallel-ui-test
https://app.bitrise.io/apps/add

52

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

app:
 envs:
 - BITRISE_PROJECT_PATH: BullsEye.xcworkspace
 - BITRISE_SCHEME: BullsEye

meta:
 bitrise.io:
 stack: osx-xcode-13.2.x

pipelines:
 build_and_run_tests:
 stages:
 - build_tests: {}
 - run_tests: {}

stages:
 build_tests:
 workflows:
 - xcode_build_for_test: {}

 run_tests:
 workflows:
 - run_tests_on_iPhone: {}
 - run_tests_on_iPad: {}
 - run_tests_on_iPod: {}

workflows:
 xcode_build_for_test:
 steps:
 - git-clone@8: {}
 - xcode-build-for-test@3:
 inputs:
 - destination: generic/platform=iOS Simulator
 - deploy-to-bitrise-io@2:
 inputs:
 - pipeline_intermediate_files: “$BITRISE_TEST_
BUNDLE_PATH:BITRISE_TEST_BUNDLE_PATH”

 run_tests_on_iPhone:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

↓

53

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Run test groups in parallel
Description
This example uses the sample-swift-project-with-parallel-ui-test iOS
Open Source sample app, which has some example Unit and UI tests
and uses Test Plans to group the tests.

Note: Xcode Test Plans provide a way to run a collection of tests with
different test configurations. raywenderlich.com has a great tutorial on
how to get started with Xcode Test Plans.

The example Pipeline config showcases how to run all the test cases of
the project on different iOS simulators.

build_and_run_tests Pipeline runs two Stages sequentially:

1.	 build_tests Stage that runs the xcode_build_for_test
Workflow. This Workflow git clones the sample project and
runs the xcode-build-for-test Step to build the target and
associated tests. The built test bundle is transferred to the next
Stage (run_tests) via the deploy-to-bitrise-io Step.

2.	 run_tests Stage runs two Workflows in parallel: run_ui_tests
and run_unit_tests. Both of these Workflows use the new
xcode-test-without-building Step, which executes the tests
based on the previous Stage built test bundle. The pre-built test
bundle is pulled by the _pull_test_bundle utility Workflow.

Instructions
1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/sample-swift-project-with-parallel-
ui-test) in the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the master branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Select any of the offered Distribution methods (for example
development, it does not really matter as now we are focusing on
testing).

7.	 Confirm the offered stack, skip choosing the app icon and the
webhook registration and kick off the first build.

8.	 Open the new Bitrise project’s Workflow Editor.

9.	 Go to the bitrise.yml tab and replace the existing bitrise.yml
with the contents of the example bitrise.yml below.

10.	Click the Start/Schedule a Build button, and select the build_
and_run_tests option in the Workflow, Pipeline dropdown
menu at the bottom of the popup.

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-run-test-groups-in-parallel.md
https://github.com/bitrise-io/sample-swift-project-with-parallel-ui-test
http://tutorial on how to get started with Xcode Test Plans
http://tutorial on how to get started with Xcode Test Plans
https://app.bitrise.io/apps/add

54

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

app:
 envs:
 - BITRISE_PROJECT_PATH: BullsEye.xcworkspace
 - BITRISE_SCHEME: BullsEye

meta:
 bitrise.io:
 stack: osx-xcode-13.2.x

pipelines:
 build_and_run_tests:
 stages:
 - build_tests: {}
 - run_tests: {}

stages:
 build_tests:
 workflows:
 - xcode_build_for_test: {}

 run_tests:
 workflows:
 - run_ui_tests: {}
 - run_unit_tests: {}

workflows:
 xcode_build_for_test:
 steps:
 - git-clone@8: {}
 - xcode-build-for-test@3:
 inputs:
 - destination: generic/platform=iOS Simulator
 - deploy-to-bitrise-io@2:
 inputs:
 - pipeline_intermediate_files: “$BITRISE_TEST_
BUNDLE_PATH:BITRISE_TEST_BUNDLE_PATH”

 run_ui_tests:
 before_run:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

↓

55

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(iOS) Merging test results and deploying to
the Test Reports add-on
Description
Test Reports add-on is tied to Bitrise builds. To make all the test reports
generated in different builds appear on a single page in the add-on, the
reports need to be merged and deployed in an additional build.

This example uses the sample-swift-project-with-parallel-ui-test iOS
Open Source sample app, which has some example Unit and UI tests
and uses Test Plans to group the tests.

run_ui_tests and run_unit_tests Workflows are extended with
a deploy-to-bitrise-io Step to make the generated test results
available for the next Stage.

build_and_run_tests Pipeline is extended with a new Stage:
deploy_test_results.

This Stage runs the deploy_test_results Workflow:

1.	 pull-intermediate-files Step downloads the previous stage
(run_tests) generated test results.

2.	 script Step moves each test result into a new test run directory
within the Test Report add-on deploy dir and creates the related
test-info.json file.

3.	 deploy-to-bitrise-io Step deploys the merged test results.

Instructions
1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/sample-swift-project-with-parallel-
ui-test) in the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the master branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Select any of the offered Distribution methods (for example
development, it does not really matter as now we are focusing on
testing).

7.	 Confirm the offered stack, skip choosing the app icon and the
webhook registration and kick off the first build.

8.	 Open the new Bitrise project’s Workflow Editor.

9.	 Go to the bitrise.yml tab and replace the existing bitrise.yml
with the contents of the example bitrise.yml below.

10.	Click the Start/Schedule a Build button, and select the build_
and_run_tests option in the Workflow, Pipeline dropdown
menu at the bottom of the popup.

11.	 Open the Pipeline’s build page.

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-merging-test-results-and-deploying-to-the-test-reports-add-on.md
https://github.com/bitrise-io/sample-swift-project-with-parallel-ui-test
https://app.bitrise.io/apps/add

56

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

12.	 Select the deploy_test_results build.

13.	 Click on Details & Add-ons on the build details page and select
the Test Reports add-on to view the merged test reports.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: ios

app:
 envs:
 - BITRISE_PROJECT_PATH: BullsEye.xcworkspace
 - BITRISE_SCHEME: BullsEye

meta:
 bitrise.io:
 stack: osx-xcode-13.2.x

pipelines:
 build_and_run_tests:
 stages:
 - build_tests: {}
 - run_tests: {}
 - deploy_test_results: {}

stages:
 build_tests:
 workflows:
 - xcode_build_for_test: {}

 run_tests:
 workflows:
 - run_ui_tests: {}
 - run_unit_tests: {}

 deploy_test_results:
 workflows:
 - merge_and_deploy_test_results: {}

workflows:
 xcode_build_for_test:
 steps:
 - git-clone@8: {}
 - xcode-build-for-test@3:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

↓

57

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Pull request
Description
Example Workflow for Android Pull Request validation.
The Workflow contains:

1.	 Running unit tests.

2.	 Running UI tests on a virtual device.

3.	 Running lint.

4.	 Building a test app and uploading to bitrise.io.

5.	 Sending the QR code of the test build to the Pull Request.

6.	 Triggering the Workflow for pull requests.

Instructions
Copy the yaml contents from below and make sure that the following
env vars have the correct settings:

•	 $PROJECT_LOCATION

•	 $MODULE

•	 $VARIANT

Also generate a new Github access token and add a new secret called
GITHUB_ACCESS_TOKEN with the newly generated token value.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:
 bitrise.io:
 stack: linux-docker-android-20.04
 machine_type_id: standard

workflows:
 pull-request:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-gradle-cache@1: {}
 - android-unit-test@1:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

5.2
Android

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-pull-request-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-unit-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-virtual-device-tests.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-lint.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-bitrise.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/github-pull-request-build-qr-code.md

58

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) CI
Description
Example Workflow for Android Pull Request validation.
The Workflow contains:

1.	 Running unit tests.

2.	 Running UI tests on a virtual device.

3.	 Running lint.

4.	 Building a test app.

5.	 Sending a Slack notification with the build status.

Instructions
Use the yaml below and change the following env var values to match
your project settings:

•	 $PROJECT_LOCATION

•	 $MODULE

•	 $VARIANT

•	 $SLACK_WEBHOOK

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:
 bitrise.io:
 stack: linux-docker-android-20.04
 machine_type_id: standard

workflows:
 ci:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-gradle-cache@1: {}
 - android-unit-test@1:
 inputs:
 - project_location: $PROJECT_LOCATION

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-ci-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-unit-test.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-virtual-device-tests.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-lint.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/slack-send-build-status.md

59

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Nightly
Description
Example workflow for Android nightly builds. The workflow contains:

1.	 Setting the version code and version name. By default the app will get
the build number ($BITRISE_BUILD_NUMBER) as the version code.

2.	 Building a release Android App Bundle and uploading to Google
Play internal testing.

3.	 Building a test app and uploading to bitrise.io.

4.	 Sending the QR code of the test build to Slack.

Check out the guide to run scheduled builds.

Prerequisites
1.	 An Android keystore file is uploaded to Bitrise. For details, see

Android code signing using the Android Sign Step.

2.	 Google Play API Access is set up. For details, see Deploying
Android apps to Bitrise and Google Play.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:
 bitrise.io:
 stack: linux-docker-android-20.04
 machine_type_id: standard

workflows:
 nightly:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
 - restore-gradle-cache@1: {}
 - change-android-versioncode-and-versionname@1:
 inputs:
 - new_version_name: 1.0.0
 - build_gradle_path: “$PROJECT_LOCATION/$MODULE/
build.gradle”

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-nightly-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://www.bitrise.io/integrations/steps/change-android-versioncode-and-versionname
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-google-play.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-google-play.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-bitrise.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/slack-send-qr-code.md
https://devcenter.bitrise.io/en/builds/starting-builds/scheduling-builds.html
https://devcenter.bitrise.io/en/code-signing/android-code-signing/android-code-signing-using-the-android-sign-step.html
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access

60

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Release
Description
Example workflow for uploading a release draft of an app to Google
Play. The workflow contains:

1.	 Setting the version name based on Env Vars passed to the build
($VERSION_NAME).

2.	 Creating a release Android App Bundle and uploading it
to Google Play.

Prerequisites
1.	 An Android keystore file is uploaded to Bitrise. For details, see

Android code signing using the Android Sign Step.

2.	 Google Play API Access is set up. For details, see Deploying
Android apps to Bitrise and Google Play.

Instructions
Copy the yaml contents from below and make sure that the following
env vars have the correct settings:

•	 $PROJECT_LOCATION

•	 $MODULE

•	 $VARIANT

This workflow will require setting the $VERSION_NAME env var for the
build. Follow this guide on how to do it.

bitrise.yml

format_version: ‘13’
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:
 bitrise.io:
 stack: linux-docker-android-20.04
 machine_type_id: standard

workflows:
 release:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@8: {}
...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-release-workflow.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://www.bitrise.io/integrations/steps/change-android-versioncode-and-versionname
https://devcenter.bitrise.io/en/builds/environment-variables.html#setting-a-custom-env-var-when-starting-a-build
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-google-play.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-deploy-to-google-play.md
https://devcenter.bitrise.io/en/code-signing/android-code-signing/android-code-signing-using-the-android-sign-step.html
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access
https://devcenter.bitrise.io/en/deploying/android-deployment/deploying-android-apps-to-bitrise-and-google-play.html#setting-up-google-play-api-access
https://devcenter.bitrise.io/en/builds/environment-variables.html#setting-a-custom-env-var-when-starting-a-build

61

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Parallel testing of unit test
shards by module
Description
Running the unit tests of a modularized app in parallel Workflows
utilizing Pipelines.

This Pipeline contains one Stage — stage_unit_test — that executes two
Workflows in parallel:

1.	 unit_test_app: This Workflow runs the unit tests of the app
module using the android-unit-test Step.

2.	 unit_test_library: This Workflow runs the unit tests of the
lib-example module using the android-unit-test Step.

Instructions
To test this configuration in a new Bitrise example project,
do the following:

1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/Bitrise-Android-Modules-Sample.git) in
the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the main branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Enter app as the specified module.

7.	 Enter debug as the specified variant.

8.	 Continue through the prompts as normal — no changes are needed.

9.	 Open the new Bitrise project’s Workflow Editor.

10.	Go to the bitrise.yml tab, and replace the existing yaml contents
with the contents of the example bitrise.yml below.

11.	 Click the Start/Schedule a Build button, and select the
pipeline_unit_test option in the Workflow, Pipeline dropdown
menu at the bottom of the popup.

bitrise.yml

format_version: “13”
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-parallel-testing-unit-test-shards.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://app.bitrise.io/apps/add

62

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Parallel UI tests on multiple devices
Description
Running the UI or instrumented tests of a single module in parallel
Workflows utilizing Pipelines. You can run the tests in parallel by
shards or by devices.

The Pipeline contains two Stages that are run serially:

1.	 build_tests: This Stage executes a Workflow — named
build_for_ui_testing — that runs the android-build-for-
ui-testing Step to build APKs for use in testing, and runs the
deploy-to-bitrise-io Step to save those APKs for use in the
later Stages. Performing this Stage separately from the actual
testing allows for each test Stage to use these pre-built APKs
rather than having to rebuild them for each test Stage.

2.	 run_tests: This Stage executes three UI test Workflows in
parallel — ui_test_on_phone, ui_test_on_tablet, ui_test_
on_foldable — which use the android-instrumented-test
Step to run the UI tests on the APKs built in the previous Worflow
on each specific device type.

Instructions
To test this configuration in a new Bitrise example project,
do the following:

1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/Bitrise-Android-Modules-Sample.git) in
the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the main branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Enter app as the specified module.

7.	 Enter debug as the specified variant.

8.	 Continue through the prompts as normal — no changes are needed.

9.	 Open the new Bitrise project’s Workflow Editor.

10.	Go to the bitrise.yml tab, and replace the existing yaml contents
with the contents of the example bitrise.yml below.

11.	 Click the Start/Schedule a Build button, and select the ui_
test_on_multiple_devices option in the Workflow, Pipeline
dropdown menu at the bottom of the popup.

bitrise.yml

↓

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-parallel-ui-tests-on-multiple-devices.md
https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/ios-key-cache-cocoapods.md
https://app.bitrise.io/apps/add

63

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

format_version: “13”
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:
 bitrise.io:
 stack: linux-docker-android-20.04
 machine_type_id: standard

pipelines:
 ui_test_on_multiple_devices:
 stages:
 - build_tests: {}
 - run_rests: {}

stages:
 build_tests:
 workflows:
 - build_for_ui_testing: {}

 run_rests:
 workflows:
 - ui_test_on_phone: {}
 - ui_test_on_tablet: {}
 - ui_test_on_foldable: {}

workflows:
 build_for_ui_testing:
 steps:
 - git-clone@8: {}
 - android-build-for-ui-testing@0:
 inputs:
 - module: app
 - variant: debug
 - deploy-to-bitrise-io@2:
 inputs:
 - pipeline_intermediate_files: |-
 $BITRISE_APK_PATH:BITRISE_APK_PATH
 $BITRISE_TEST_APK_PATH:BITRISE_TEST_APK_PATH

 ui_test_on_phone:
 envs:
 - EMULATOR_PROFILE: pixel_5
 before_run:
 - _pull_apks
 after_run:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

↓

64

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

(Android) Parallel unit and UI tests
Description

Running unit tests and UI tests in parallel utilizing Pipelines.

The Pipeline contains one Stage — stage_unit_and_ui_test — that
executes two Workflows in parallel:

1.	 unit_tests: This Workflow simply runs the unit tests of the given
module and variant using the android-unit-test Step.

2.	 ui_tests: This Workflow builds the given module and variant
using the android-build-for-ui-testing Step, spins up an
emulator using the avd-manager Step, waits for the emulator to
boot using the wait-for-android-emulator Step, and runs the
UI tests using the android-instrumented-test Step.

Instructions
To test this configuration in a new Bitrise example project,
do the following:

1.	 Visit the Create New App page to create a new App.

2.	 When prompted to select a git repository, choose Other/Manual
and paste the sample project repository URL (https://github.
com/bitrise-io/Bitrise-Android-Modules-Sample.git) in
the Git repository (clone) URL field.

3.	 Confirm that this is a public repository in the resulting pop-up.

4.	 Select the main branch to scan.

5.	 Wait for the project scanner to complete.

6.	 Enter app as the specified module.

7.	 Enter debug as the specified variant.

8.	 Continue through the prompts as normal — no changes are needed.

9.	 Open the new Bitrise project’s Workflow Editor.

10.	Go to the bitrise.yml tab, and replace the existing yaml contents
with the contents of the example bitrise.yml below.

11.	 Click the Start/Schedule a Build button, and select the
pipeline_unit_and_ui_test option in the Workflow, Pipeline
dropdown menu at the bottom of the popup.

bitrise.yml

format_version: “13”
default_step_lib_source: https://github.com/bitrise-io/
bitrise-steplib.git
project_type: android

meta:

...
PLEASE LOOK AT GITHUB PAGE FOR THE REST OF BITRISE.YML

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/android-parallel-unit-and-ui-tests.md
https://app.bitrise.io/apps/add

65

MO
DU

LA
R

PL
UG

 &
 P
LA

Y

C
ha

pt
er

 5
: T

ec
hn

ol
og

y
Sp

ec
ifi

c
R

ec
ip

es

Create Gitflow release branch
Description
An example Workflow that creates a Gitflow release branch for a
specific version. The version can be passed as an Environment Variable
for the Workflow.

Prerequisites
Make sure that Bitrise has write access to your repository. You need to
manually add an SSH key with write permission on GitHub.

bitrise.yml

Run the workflow with $VERSION env set up to, for
examepl, ‘2.4.3’
create-release-branch:
 steps:
 - activate-ssh-key@4:
 run_if: ‘{{getenv “SSH_RSA_PRIVATE_KEY” | ne “”}}’
 - git-clone@6: {}
 - script@1:
 inputs:
 - content: |-
 #!/usr/bin/env bash
 # fail if any commands fails
 set -e
 # debug log
 set -x

 git checkout -b release-$VERSION
 git push origin release-$VERSION

5.3
Other

https://github.com/bitrise-io/workflow-recipes/blob/main/recipes/workflow-create-gitflow-release-branch.md
https://devcenter.bitrise.io/en/apps/configuring-ssh-keys.html#configuring-ssh-keys

Additional Resources

Case studies

Support Center

DevCenter

Book a demo

https://bitrise.io/customer-stories
https://support.bitrise.io/hc/en-us
https://devcenter.bitrise.io/
https://bitrise.io/demo

